10,819 research outputs found

    Single grid accelerator for an ion thrustor

    Get PDF
    A single grid accelerator system for an ion thrustor is discussed. A layer of dielectric material is interposed between this metal grid and the chamber containing an ionized propellant for protecting the grid against sputtering erosion

    Classical and Quantum Dilogarithm Identities

    Get PDF
    Using the quantum cluster algebra formalism of Fock and Goncharov, we present several forms of quantum dilogarithm identities associated with periodicities in quantum cluster algebras, namely, the tropical, universal, and local forms. We then demonstrate how classical dilogarithm identities naturally emerge from quantum dilogarithm identities in local form in the semiclassical limit by applying the saddle point method

    Simulation of Slow Light with Electronics Circuits

    Full text link
    We present an electronic circuit which simulates wave propagation in dispersive media. The circuit is an array of phase shifter composed of operational amplifiers and can be described with a discretized version of one-dimensional wave equation for envelopes. The group velocity can be changed both spatially and temporarily. It is used to emulate slow light or stopped light, which has been realized in a medium with electromagnetically induced transparency (EIT). The group-velocity control of optical pulses is expected to be a useful tool in the field of quantum information and communication.Comment: The following article has been submitted to the American Journal of Physics. After it is published, it will be found at http://scitation.aip.org/ajp (7 pages, 7 figures

    Generation of photon pairs using polarization-dependent two-photon absorption

    Get PDF
    We propose a new method for generating photon pairs from coherent light using polarization-dependent two-photon absorption. We study the photon statistics of two orthogonally polarized modes by solving a master equation, and show that when we prepare a coherent state in one polarization mode, photon pairs are created in the other mode. The photon pairs have the same frequency as that of the incident light.Comment: 4 pages, 3 figures, submitted to PR

    Demonstration of negative group delays in a simple electronic circuit

    Full text link
    We present a simple electronic circuit which produces negative group delays for base-band pulses. When a band-limited pulse is applied as the input, a forwarded pulse appears at the output. The negative group delays in lumped systems share the same mechanism with the superluminal light propagation, which is recently demonstrated in an absorption-free, anomalous dispersive medium [Wang et al., Nature 406, 277 (2000)]. In this circuit, the advance time more than twenty percent of the pulse width can easily be achieved. The time constants, which can be in the order of seconds, is slow enough to be observed with the naked eye by looking at the lamps driven by the pulses.Comment: 6pages,8 figure

    Detection of laser-UV microirradiation-induced DNA photolesions by immunofluorescent staining

    Get PDF
    A low-power laser-UV microbeam of wave-length 257 nm was used for microirradiation of a small part of the nucleus of Chinese hamster cells. Following fixation in interphase or in the subsequent metaphase indirect immunofluorescent staining was performed with antiserum to photoproducts of DNA treated with far UV light. The results show that antibodies specific for UV-irradiated DNA can be used for a direct detection of laser-UV microirradiation-induced DNA photolesions. The potential usefulness of this method for investigation of the spatial arrangement of chromosomes in the interphase nucleus is discussed

    Subspace Variational Quantum Simulator

    Full text link
    Quantum simulation is one of the key applications of quantum computing, which can accelerate research and development in chemistry, material science, etc. Here, we propose an efficient method to simulate the time evolution driven by a static Hamiltonian, named subspace variational quantum simulator (SVQS). SVQS employs the subspace-search variational eigensolver (SSVQE) to find a low-energy subspace and further extends it to simulate dynamics within the low-energy subspace. More precisely, using a parameterized quantum circuit, the low-energy subspace of interest is encoded into a computational subspace spanned by a set of computational basis, where information processing can be easily done. After the information processing, the computational subspace is decoded to the original low-energy subspace. This allows us to simulate the dynamics of low-energy subspace with lower overhead compared to existing schemes. While the dimension is restricted for feasibility on near-term quantum devices, the idea is similar to quantum phase estimation and its applications such as quantum linear system solver and quantum metropolis sampling. Because of this simplicity, we can successfully demonstrate the proposed method on the actual quantum device using Regetti Quantum Cloud Service. Furthermore, we propose a variational initial state preparation for SVQS, where the initial states are searched from the simulatable eigensubspace. Finally, we demonstrate SVQS on Rigetti Quantum Cloud Service

    Heegaard genus, cut number, weak p-congruence, and quantum invariants

    Full text link
    We use quantum invariants to define a 3-manifold invariant j_p which lies in the non-negative integers. We relate j_p to the Heegard genus, and the cut number. We show that j_$ is an invariant of weak p-congruence.Comment: to appear in JKTR. 8pages 1 figur

    The Dog on the Ship: The "Canis Major Dwarf Galaxy" as an Outlying Part of the Argo Star System

    Full text link
    Overdensities in the distribution of low latitude, 2MASS giant stars are revealed by systematically peeling away from sky maps the bulk of the giant stars conforming to ``isotropic'' density laws generally accounting for known Milky Way components. This procedure, combined with a higher resolution treatment of the sky density of both giants and dust allows us to probe to lower Galactic latitudes than previous 2MASS giant star studies. While the results show the swath of excess giants previously associated with the Monoceros ring system in the second and third Galactic quadrants at distances of 6-20 kpc, we also find a several times larger overdensity of giants in the same distance range concentrated in the direction of the ancient constellation Argo. Isodensity contours of the large structure suggest that it is highly elongated and inclined by about 3 deg to the disk, although details of the structure -- including the actual location of highest density, overall extent, true shape -- and its origin, remain unknown because only a fraction of it lies outside highly dust-obscured, low latitude regions. Nevertheless, our results suggest that the 2MASS M giant overdensity previously claimed to represent the core of a dwarf galaxy in Canis Major (l ~ 240 deg) is an artifact of a dust extinction window opening to the overall density rise to the more significant Argo structure centered at larger longitude (l ~ 290 +- 10 deg, b ~ -4 +- 2 deg).Comment: 4 pages, 4 figure
    corecore